James Clerk Maxwell: A Commemoration Volume 1831-1931 Read Online

Related Searches. This latest Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC will again form the standard reference for all those concerned with climate change and its consequences, including students, researchers and policy makers in environmental science, meteorology, climatology, View Product. Eton and King's: Recollections, Mostly Trivial, James, best remembered today for his ghost stories, was Provost of King's James, best remembered today for his ghost stories, was Provost of King's College, Cambridge and of Eton College In these memoirs, he tells the story of the times he spent at the two prestigious institutions, Letters and Papers Illustrative of the Reigns of.

This collection, published in the Rolls Series, contains documents from the period to This collection, published in the Rolls Series, contains documents from the period to, when the House of York was replaced by the Tudor dynasty. It was one of many selections of source material on the period Memoirs of the Life of Charles Macklin, Esq. Drawing on his own papers and first published in, this two-volume account traces the Drawing on his own papers and first published in, this two-volume account traces the colourful life of the actor and playwright Charles Macklin c.

His long career serves as the focal point in a history of the eighteenth-century theatre Ovid was, despite his faults, what Macaulay called him, 'a good fellow'. But he was But he was also a wit, the product of an age of refinement. More important, he was an artist with conscious mastery of a great range of literary Problems of Cosmology and Stellar Dynamics. Problems of Cosmogony and Stellar Dynamics is a theoretical prelude to Jeans's later and more Problems of Cosmogony and Stellar Dynamics is a theoretical prelude to Jeans's later and more mature work on the subject, Astronomy and Cosmogony.

The impetus for publishing his theories on the behaviour of rotating masses, and on general dynamical theory, Reprint of Papers on Electrostatics and Magnetism. William Thomson, Baron Kelvin, born with a great talent for mathematics and physics, was William Thomson, Baron Kelvin, born with a great talent for mathematics and physics, was educated at Glasgow and Cambridge. While only in his twenties, he was appointed to the University of Glasgow's Chair in Natural Philosophy, which he was Selections from the Smuts Papers: Volume 6, December.

Christianity—that is, the religion of the Bible—is the only scheme or form of belief which disavows any possessions on such a tenure. Here alone all is free. You may fly to the ends of the world and find no God but the Author of Salvation. You may search the Scriptures and not find a text to stop you in your explorations.

Sceptics pretend to have read them, and have found certain witty objections But a Candle is coming to drive out all Ghosts and Bugbears. Let us follow the light. The extent to which Maxwell "ploughed up" his Christian beliefs and put them to the intellectual test, can be judged only incompletely from his writings.

But there is plenty of evidence, especially from his undergraduate days, that he did deeply examine his faith. Certainly, his knowledge of the Bible was remarkable, so his confidence in the Scriptures was not based on ignorance. In the summer of his third year, Maxwell spent some time at the Suffolk home of the Rev C.

Tayler, the uncle of a classmate, G. The love of God shown by the family impressed Maxwell, particularly after he was nursed back from ill health
by the minister and his wife. On his return to Cambridge, Maxwell writes to his recent host a chatty and affectionate letter including the following testimony, [45].

I have the capacity of being more wicked than any example that man could set me, and in November, Maxwell studied under William Hopkins, whose success in nurturing mathematical genius had earned him the nickname of "senior wrangler-maker". In, Maxwell graduated from Trinity with a degree in mathematics.

He scored second highest in the final examination, coming behind Edward Routh and earning himself the title of Second Wrangler. He was later declared equal with Routh in the more exacting ordeal of the Smith's Prize examination.

The nature and perception of colour was one such interest which he had begun at the University of Edinburgh while he was a student of Forbes. Maxwell was made a fellow of Trinity on 10 October, sooner than was the norm, [53] and was asked to prepare lectures on hydrostatics and optics and to set examination papers.

The year-old Maxwell was a good 15 years younger than any other professor at Marischal. He engaged himself with his new responsibilities as head of a department, devising the syllabus and preparing lectures. He focused his attention on a problem that had eluded scientists for years: the nature of Saturn's rings.

It was unknown how they could remain stable without breaking up, drifting away or crashing into Saturn. Since neither was observed, he concluded that the rings must be composed of numerous small particles he called "brick-bats", each independently orbiting Saturn.

The rings are expected to vanish entirely over the next million years. They were engaged in February and married in Aberdeen on 2 June. There was no room for two professors of Natural Philosophy, so Maxwell, despite his scientific reputation, found himself laid off. He was unsuccessful in applying for Forbes's recently vacated chair at Edinburgh, the post instead going to Tait.

Maxwell's time at King's was probably the most productive of his career. He was awarded the Royal Society's Rumford Medal in for his work on colour and was later elected to the Society in Maxwell would often attend lectures at the Royal Institution, where he came into regular contact with Michael Faraday. They nevertheless maintained a strong respect for each other's talents. This time is especially noteworthy for the advances Maxwell made in the fields of electricity and magnetism.

He examined the nature of both electric and magnetic fields in his two-part paper "On physical lines of force", which was published in In it he provided a conceptual model for electromagnetic induction, consisting of tiny spinning cells of magnetic flux. Two more parts were later added to and published in that same paper in early In the first additional part he discussed the nature of electrostatics and displacement currents.

In the second additional part, he dealt with the rotation of the plane of the polarisation of light in a magnetic field, a phenomenon that had been discovered by Faraday and is now known as the Faraday effect. In his paper 'On governors' he mathematically described the behaviour of governors, devices that control the speed of steam engines, thereby establishing the theoretical basis of control engineering. Maxwell was also the first to make explicit use of dimensional analysis, in In he returned to Cambridge to become the first Cavendish Professor of Physics.

In March Maxwell sent an important letter to the astronomer David Todd. Maxwell died in Cambridge of abdominal cancer on 5 November at the age of He had gauged and fathomed all the schemes and systems of philosophy, and had found them utterly empty and unsatisfying—"unworkable" was his own word about them—and he turned with simple faith to the Gospel of the Saviour.

As death approached Maxwell told a Cambridge colleague, [45]. I have been thinking how very gently I have always been dealt with. I have never had a violent shove all my life.

The only desire which I can have is like David to serve my own generation by the will of God, and then fall asleep. Stokes, and Colin Mackenzie, who was Maxwell's cousin. Overburdened with work, Stokes passed Maxwell's papers to William Garnett, who had effective custody of the papers until about As a great lover of Scottish poetry, Maxwell memorised poems and wrote his own. It has the opening lines [91]. A collection of his poems was published by his friend Lewis Campbell in , which remark upon his remarkable intellectual qualities being matched by social awkwardness.

Maxwell was an evangelical Presbyterian and in his later years became an Elder of the Church of Scotland. One facet of this conversion may have aligned him with an antipositivist position. Maxwell had studied and commented on electricity and magnetism as early as when his paper "On Faraday's lines of force" was read to the Cambridge Philosophical Society. He reduced all of the current knowledge into a linked set of differential equations with 20 equations in 20 variables.

Maxwell, while lecturing at King's College, Maxwell calculated that the speed of propagation of an electromagnetic field is approximately that of the speed of light see speed of light electromagnetic constants.

He considered this to be more than just a coincidence, commenting, "We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena. Working on the problem further, Maxwell showed that the equations predict the existence of waves of oscillating electric and magnetic fields that travel through empty space at a speed that could be predicted from simple electrical experiments; using the data available at the time, Maxwell obtained a velocity of, metres per second 1.

His famous twenty equations, in their modern form of four partial differential equations, first appeared in fully developed form in his textbook A Treatise on Electricity and Magnetism in Although potentials became much less popular in the nineteenth century, [i] the use of scalar and vector potentials is now standard in the solution of Maxwell's equations.
As Barrett and Grimes describe: [43] Maxwell expressed electromagnetism in the algebra of quaternions and made the electromagnetic potential the centerpiece of his theory. In Heaviside replaced the electromagnetic potential field by force fields as the centerpiece of electromagnetic theory.

According to Heaviside, the electromagnetic potential field was arbitrary and needed to be “assassinated”. The result was the realization that there was no need for the greater physical insights provided by quaternions if the theory was purely local, and vector analysis became commonplace.

Maxwell was proved correct, and his quantitative connection between light and electromagnetism is considered one of the great accomplishments of 19th century mathematical physics. Maxwell also introduced the concept of the electromagnetic field in comparison to force lines that Faraday described. At that time, Maxwell believed that the propagation of light required a medium for the waves, dubbed the luminiferous aether.

These difficulties inspired Albert Einstein to formulate the theory of special relativity; in the process Einstein dispensed with the requirement of a stationary luminiferous aether. Along with most physicists of the time, Maxwell had a strong interest in psychology. Following in the steps of Isaac Newton and Thomas Young, he was particularly interested in the study of colour vision.

From to , Maxwell published at intervals a series of investigations concerning the perception of colour, colour-blindness, and colour theory, and was awarded the Rumford Medal for "On the Theory of Colour Vision". Isaac Newton had demonstrated, using prisms, that white lights, such as sunlight, are composed of a number of monochromatic components which could then be recombined into white light. Hence the paradox that puzzled physicists of the time: two complex lights composed of more than one monochromatic light could look alike but be physically different, called metameres.

Thomas Young later proposed that this paradox could be explained by colours being perceived through a limited number of channels in the eyes, which he proposed to be threefold, [1] the trichromatic colour theory. Maxwell used the recently developed Linear algebra to prove Young's theory. Any monochromatic light stimulating three receptors should be able to be equally stimulated by a set of three different monochromatic lights in fact, by any set of three different lights.

He demonstrated that to be the case, [1] inventing colour matching experiments and Colourimetry. Maxwell was also interested in applying his theory of colour perception, namely in colour photography.

Stemming directly from his psychological work on colour perception: if a sum of any three lights could reproduce any perceivable colour, then colour photographs could be produced with a set of three coloured filters.

In the course of his paper, Maxwell proposed that, if three black-and-white photographs of a scene were taken through red, green and blue filters and transparent prints of the images were projected onto a screen using three projectors equipped with similar filters, when superimposed on the screen the result would be perceived by the human eye as a complete reproduction of all the colours in the scene.

During an Royal Institution lecture on colour theory, Maxwell presented the world's first demonstration of colour photography by this principle of three-colour analysis and synthesis. Thomas Sutton, inventor of the single-lens reflex camera, took the picture.

He photographed a tartan ribbon three times, through red, green, and blue filters, also making a fourth photograph through a yellow filter, which, according to Maxwell's account, was not used in the demonstration. Because Sutton's photographic plates were insensitive to red and barely sensitive to green, the results of this pioneering experiment were far from perfect. It was remarked in the published account of the lecture that "if the red and green images had been as fully photographed as the blue," it "would have been a truly-coloured image of the riband.

By finding photographic materials more sensitive to the less refrangible rays, the representation of the colours of objects might be greatly improved. Maxwell also investigated the kinetic theory of gases. Originating with Daniel Bernoulli, this theory was advanced by the successive labours of John Herapath, John James Waterston, James Joule, and particularly Rudolf Clausius, to such an extent as to put its general accuracy beyond a doubt, but it received enormous development from Maxwell, who in this field appeared as an experimenter on the laws of gaseous friction as well as a mathematician.

Between and , he developed the theory of the distributions of velocities in particles of a gas, work later generalised by Ludwig Boltzmann. In the kinetic theory, temperatures and heat involve only molecular movement. This approach generalised the previously established laws of thermodynamics and explained existing observations and experiments in a better way than had been achieved previously.

His work on thermodynamics led him to devise the thought experiment that came to be known as Maxwell's demon, where the second law of thermodynamics is violated by an imaginary being capable of sorting particles by energy. In he established Maxwell's thermodynamic relations, which are statements of equality among the second derivatives of the thermodynamic potentials with respect to different thermodynamic variables.


Philosophical Transactions of the Royal Society of London. Bibcode: RSPT. Archived PDF from the original on 28 July This article accompanied an 8 December presentation by Maxwell to the Royal Society. His statement that "light and magnetism are affections of the same substance" is at page Chicago: University of Chicago Press.
James Clerk Maxwell: A Commemoration Volume 1831-1931 Reviews

See details. Overview Originally published in , this volume was created to mark the centenary of James Clerk Maxwell's birth. Comprised of ten essays dealing with various aspects of Maxwell's life and achievements, the text includes contributions from the following figures: J. This book will be of value to anyone with an interest in Maxwell and his key role in the development of physics and mathematics.


Larmor; 5. Maxwell's laboratory William Garnett; 7. Some memories Sir Ambrose Fleming; 8. Clerk Maxwell and wireless telegraphy Sir Oliver Lodge; 9. Early days at the Cavendish laboratory Sir R. Glazebrook; Clerk Maxwell as lecturer Sir H. Related Searches. This latest Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC will again form the standard reference for all those concerned with climate change and its consequences, including students, researchers and policy makers in environmental science, meteorology, climatology, View Product.

Eton and King's Recollections. Mostly Trivial, James , best remembered today for his ghost stories, was Provost of King's James , best remembered today for his ghost stories, was Provost of King's College, Cambridge and of Eton College In these memoirs, he tells the story of the times he spent at the two prestigious institutions, Letters and Papers Illustrative of the Reigns of.

This collection, published in the Rolls Series, contains documents from the period to This collection, published in the Rolls Series, contains documents from the period to , when the House of York was replaced by the Tudor dynasty. His contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein.

I stand on the shoulders of Maxwell'. His birthplace now houses a museum operated by the James Clerk Maxwell Foundation. His father was a man of comfortable means [14] of the Clerk family of Penicuik , holders of the baronetcy of Clerk of Penicuik. His father's brother was the 6th Baronet.

Cay and Maxwell were close friends and Cay acted as his best man when Maxwell married. Maxwell's parents met and married when they were well into their thirties; [18] his mother was nearly 40 when he was born. They had had one earlier child, a daughter named Elizabeth, who died in infancy. He is a very happy man, and has improved much since the weather got moderate; he has great work with doors, locks, keys, etc. He also investigates the hidden course of streams and bell-wires, the way the water gets from the pond through the wall Recognising the boy's potential, Maxwell's mother Frances took responsibility for his early education, which in the Victorian era was largely the job of the woman of the house.

Indeed, his knowledge of scripture was already detailed; he could give chapter and verse for almost any quotation from the psalms. His mother was taken ill with abdominal cancer and, after an unsuccessful operation, died in December when he was eight years old. His education was then overseen by his father and his father's sister-in-law Jane, both of whom played pivotal roles in his life.

Little is known about the young man hired to instruct Maxwell, except that he treated the younger boy harshly, chiding him for being slow and wayward. James' father took him to Robert Davidson 's demonstration of electric propulsion and magnetic force on February 12, , an experience with profound implications for the boy.

Maxwell was sent to the prestigious Edinburgh Academy. During this time his passion for drawing was encouraged by his older cousin Jemima. Having arrived on his first day of school wearing a pair of homemade shoes and a tunic, he earned the unkind nickname of "Daffie ". They remained lifelong friends. Maxwell was fascinated by geometry at an early age, rediscovering the regular polyhedra before he received any formal instruction. Maxwell's interests ranged far beyond the school syllabus and he did not pay particular attention to examination performance.

In it he described a mechanical means of drawing mathematical curves with a piece of twine, and the properties of ellipses , Cartesian ovals , and related curves with more than two foci. The work, [12] [32] of, "On the description of oval curves and those having a plurality of foci" [33] was presented to the Royal Society of Edinburgh by James Forbes , a professor of natural philosophy at the University of Edinburgh , [12] [32] because Maxwell was deemed too young to present the work himself.

Maxwell left the Academy in at age 16 and began attending classes at the University of Edinburgh. The academic staff of the University included some highly regarded names; his first year tutors included Sir William Hamilton , who lectured him on logic and metaphysics , Philip Kelland on mathematics, and James Forbes on natural philosophy. One of these, "On the Equilibrium of Elastic Solids", laid the foundation for an important
discovery later in his life, which was the temporary double refraction produced in viscous liquids by shear stress.

The paper was delivered to the Royal Society by his tutor Kelland instead. In October, already an accomplished mathematician, Maxwell left Scotland for the University of Cambridge.

He initially attended Peterhouse, however before the end of his first term transferred to Trinity, where he believed it would be easier to obtain a fellowship. He joined the "Apostles", an exclusive debating society of the intellectual elite, where through his essays he sought to work out this understanding. Now my great plan, which was conceived of old, Nothing is to be holy ground consecrated to Stationary Faith, whether positive or negative.

All fallow land is to be ploughed up and a regular system of rotation followed. Never hide anything, be it weed or no, nor seem to wish it hidden. Now I am convinced that no one but a Christian can actually purge his land of these holy spots. I do not say that no Christians have enclosed places of this sort.

Many have a great deal, and every one has some. But there are extensive and important tracts in the territory of the Scoffer, the Pantheist, the Quietist, Formalist, Dogmatist, Sensualist, and the rest, which are openly and solemnly Tabooed.

Christianity—that is, the religion of the Bible—is the only scheme or form of belief which disavows any possessions on such a tenure. Here alone all is free. You may fly to the ends of the world and find no God but the Author of Salvation. You may search the Scriptures and not find a text to stop you in your explorations. Sceptics pretend to have read them, and have found certain witty objections But a Candle is coming to drive out all Ghosts and Bogbears.

Let us follow the light. The extent to which Maxwell "ploughed up" his Christian beliefs and put them to the intellectual test, can be judged only incompletely from his writings. But there is plenty of evidence, especially from his undergraduate days, that he did deeply examine his faith. Certainly, his knowledge of the Bible was remarkable, so his confidence in the Scriptures was not based on ignorance. In the summer of his third year, Maxwell spent some time at the Suffolk home of the Rev C.

Tayler, the uncle of a classmate, G. The love of God shown by the family impressed Maxwell, particularly after he was nursed back from ill health by the minister and his wife. On his return to Cambridge, Maxwell writes to his recent host a chatty and affectionate letter including the following testimony, [45].

I have the capacity of being more wicked than any example that man could set me, and In November, Maxwell studied under William Hopkins, whose success in nurturing mathematical genius had earned him the nickname of "senior wrangler-maker". In, Maxwell graduated from Trinity with a degree in mathematics.

He scored second highest in the final examination, coming behind Edward Routh and earning himself the title of Second Wrangler. He was later declared equal with Routh in the more exacting ordeal of the Smith's Prize examination. The nature and perception of colour was one such interest which he had begun at the University of Edinburgh while he was a student of Forbes. Maxwell was made a fellow of Trinity on 10 October, sooner than was the norm, [53] and was asked to prepare lectures on hydrostatics and optics and to set examination papers.

The year-old Maxwell was a good 15 years younger than any other professor at Marischal. He engaged himself with his new responsibilities as head of a department, devising the syllabus and preparing lectures. He focused his attention on a problem that had eluded scientists for years: the nature of Saturn's rings. It was unknown how they could remain stable without breaking up, drifting away or crashing into Saturn. Since neither was observed, he concluded that the rings must be composed of numerous small particles he called "brick-bats", each independently orbiting Saturn.

The rings are expected to vanish entirely over the next million years. They were engaged in February and married in Aberdeen on 2 June There was no room for two professors of Natural Philosophy, so Maxwell, despite his scientific reputation, found himself laid off. He was unsuccessful in applying for Forbes's recently vacated chair at Edinburgh, the post instead going to Tait.

Maxwell's time at King's was probably the most productive of his career. He was awarded the Royal Society's Rumford Medal in for his work on colour and was later elected to the Society in Maxwell would often attend lectures at the Royal Institution, where he came into regular contact with Michael Faraday. They nevertheless maintained a strong respect for each other's talents. This time is especially noteworthy for the advances Maxwell made in the fields of electricity and magnetism.

He examined the nature of both electric and magnetic fields in his two-part paper "On physical lines of force", which was published in In it he provided a conceptual model for electromagnetic induction, consisting of tiny spinning cells of magnetic flux. Two more parts were later added to and published in that same paper in early In the first additional part he discussed the nature of electrostatics and displacement current. In the second additional part, he dealt with the rotation of the plane of the polarisation of light in a magnetic field, a phenomenon that had been discovered by Faraday and is now known as the Faraday effect.

In his paper 'On governors' he mathematically described the behaviour of governors, devices that control the speed of steam engines, thereby establishing the theoretical basis of control engineering. Maxwell was also the first to make explicit use of dimensional analysis, in In he returned to Cambridge to become the first Cavendish Professor of Physics.

In March Maxwell sent an important letter to the astronomer David Todd. Maxwell died in Cambridge of abdominal cancer on 5 November at the age of He had gauged and fathomed all the schemes and systems of philosophy, and had found them utterly empty and unsatisfying—"unworkable" was his own word about them—and he turned with simple faith to the Gospel of the Saviour.
As death approached Maxwell told a Cambridge colleague, [45]. I have been thinking how very gently I have always been dealt with. I have never had a violent shove all my life. The only desire which I can have is like David to serve my own generation by the will of God, and then fall asleep.

Stokes, and Colin Mackenzie, who was Maxwell's cousin. Overburdened with work, Stokes passed Maxwell's papers to William Garnett, who had effective custody of the papers until about As a great lover of Scottish poetry, Maxwell memorised poems and wrote his own.

It has the opening lines [91]. A collection of his poems was published by his friend Lewis Campbell in Descriptions of Maxwell remark upon his remarkable intellectual qualities being marked by social awkwardness. Maxwell was an evangelical Presbyterian and in his later years became an Elder of the Church of Scotland.

One facet of this conversion may have aligned him with an antipositivist position. Maxwell had studied and commented on electricity and magnetism as early as when his paper "On Faraday's lines of force" was read to the Cambridge Philosophical Society. He reduced all of the current knowledge into a linked set of differential equations with 20 equations in 20 variables.

Around, while lecturing at King's College, Maxwell calculated that the speed of propagation of an electromagnetic field is approximately that of the speed of light see speed of light electromagnetic constants. He considered this to be more than just a coincidence, commenting, "We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena. Working on the problem further, Maxwell showed that the equations predict the existence of waves of oscillating electric and magnetic fields that travel through empty space at a speed that could be predicted from simple electrical experiments; using the data available at the time, Maxwell obtained a velocity of, metres per second 1.

His famous twenty equations, in their modern form of four partial differential equations, first appeared in fully developed form in his textbook A Treatise on Electricity and Magnetism in Although potentials became much less popular in the nineteenth century, the use of scalar and vector potentials is now standard in the solution of Maxwell's equations. As Barnett and Grimes describe: Maxwell expressed electromagnetism in the algebra of quaternions and made the electromagnetic potential the centerpiece of his theory.

In Heaviside replaced the electromagnetic potential field by force fields as the centerpiece of electromagnetic theory. According to Heaviside, the electromagnetic potential field was arbitrary and needed to be "assassinated". The result was the realization that there was no need for the greater physical insights provided by quaternions if the theory was purely local, and vector analysis became commonplace. Maxwell was proved correct, and his quantitative connection between light and electromagnetism is considered one of the great accomplishments of 19th century mathematical physics.

Maxwell also introduced the concept of the electromagnetic field in comparison to force lines that Faraday described. At that time, Maxwell believed that the propagation of light required a medium for the waves, dubbed the luminiferous aether. These difficulties inspired Albert Einstein to formulate the theory of special relativity; in the process Einstein dispensed with the requirement of a stationary luminiferous aether.

Along with most physicists of the time, Maxwell had a strong interest in psychology. Following in the steps of Isaac Newton and Thomas Young, he was particularly interested in the study of colour vision. From to, Maxwell published at intervals a series of investigations concerning the perception of colour, colour-blindness, and colour theory, and was awarded the Rumford Medal for "On the Theory of Colour Vision".

Isaac Newton had demonstrated, using prisms, that white lights, such as sunlight, are composed of a number of monochromatic components which could then be recombined into white light. Hence the paradox that puzzled physicists of the time: two complex lights composed of more than one monochromatic light could look alike but be physically different, called metameres.

Thomas Young later proposed that this paradox could be explained by colours being perceived through a limited number of channels in the eyes, which he proposed to be threefold, the trichromatic colour theory. Maxwell used the recently developed Linear algebra to prove Young's theory. Any monochromatic light stimulating three receptors should be able to be equally stimulated by a set of three different monochromatic lights in fact, by any set of three different lights.

He demonstrated that to be the case, inventing colour matching experiments and Colourimetry. Maxwell was also interested in applying his theory of colour perception, namely in colour photography. Stemming directly from his psychological work on colour perception: if a sum of any three lights could reproduce any perceivable colour, then colour photographs could be produced with a set of three coloured filters. In the course of his paper, Maxwell proposed that, if three black-and-white photographs of a scene were taken through red, green and blue filters and transparent prints of the images were projected onto a screen using three projectors equipped with similar filters, when superimposed on the screen the result would be perceived by the human eye as a complete reproduction of all the colours in the scene.

During an Royal Institution lecture on colour theory, Maxwell presented the world's first demonstration of colour photography by this principle of three-colour analysis and synthesis. Thomas Sutton, inventor of the single-lens reflex camera, took the picture. He photographed a tartan ribbon three times, through red, green, and blue filters, also making a fourth photograph through a yellow filter, which, according to Maxwell's account, was not used in the demonstration.

Because Sutton's photographic plates were insensitive to red and barely sensitive to green, the results of this pioneering experiment were far from perfect.

It was remarked in the published account of the lecture that if the red and green images had been as fully photographed as the blue, it would have been a truly-coloured image of the riband. By finding photographic materials more sensitive to the less refrangible rays, the representation of the colours of objects might be greatly improved.
Maxwell also investigated the kinetic theory of gases. Originating with Daniel Bernoulli, this theory was advanced by the successive labours of John Herapath, John James Waterston, James Joule, and particularly Rudolf Clausius, to such an extent as to put its general accuracy beyond a doubt; but it received enormous development from Maxwell, who in this field appeared as an experimenter on the laws of gaseous friction as well as a mathematician.

Between and , he developed the theory of the distributions of velocities in particles of a gas, work later generalised by Ludwig Boltzmann. In the kinetic theory, temperatures and heat involve only molecular movement. This approach generalised the previously established laws of thermodynamics and explained existing observations and experiments in a better way than had been achieved previously. His work on thermodynamics led him to devise the thought experiment that came to be known as Maxwell's demon, where the second law of thermodynamics is violated by an imaginary being capable of sorting particles by energy.

In he established Maxwell's thermodynamic relations, which are statements of equality among the second derivatives of the thermodynamic potentials with respect to different thermodynamic variables. In , he constructed a plaster thermodynamic visualisation as a way of exploring phase transitions, based on the American scientist Josiah Willard Gibbs’s graphical thermodynamics papers.


About James Clerk Maxwell: A Commemoration Volume 1831-1931 Writer

Free Download James Clerk Maxwell: A Commemoration Volume 1831-1931 PDF Book


